10 research outputs found

    Эффективный алгоритм определения уровня полезных сигналов при расшифровке магнитных и вихретоковых дефектограмм

    Get PDF
    To ensure traffic safety of railway transport, non-destructive testing of rails is regularly carried out by using various approaches and methods, including magnetic and eddy current flaw detection methods. An automatic analysis of large data sets (defectgrams) that come from the corresponding equipment is still an actual problem. The analysis means a process of determining the presence of defective sections along with identifying structural elements of railway tracks on defectograms. At the same time, under the conditions of significant volumes of incoming information, fast and efficient algorithms of data analysis are of most interest. This article is an addition to the previous article devoted to the problem of automatic determination of a threshold level of amplitudes of useful signals (from defects and structural elements of a railway track) during the analysis of defectograms (records) of magnetic and eddy current flaw detectors, which contains an algorithm for finding the threshold level of a rail noise and its theoretical justification with examples of its operation on several fragments of real magnetic and eddy current defectograms. The article presents a simple and effective implementation of the algorithm, which is successfully used in practice for the automatic analysis of magnetic and eddy current defectograms. Для обеспечения безопасности движения на железнодорожном транспорте регулярно проводится неразрушающий контроль рельсов с применением различных подходов и методов, включая методы магнитной и вихретоковой дефектоскопии. Актуальной задачей по-прежнему остается автоматический анализ больших массивов данных (дефектограмм), которые поступают от соответствующего оборудования. Под анализом понимается процесс определения по дефектограммам наличия дефектных участков наряду с выявлением конструктивных элементов рельсового пути. При этом в условиях значительных объемов поступающей на обработку информации наибольший интерес представляют быстрые и эффективные алгоритмы анализа данных. Данная статья является дополнением к предыдущей статье авторов, посвященной задаче автоматического определения порогового уровня амплитуд полезных сигналов при расшифровке дефектограмм магнитных и вихретоковых дефектоскопов, в которой был предложен алгоритм нахождения порогового уровня шума рельсов с его теоретическим обоснованием, а также рассматривались примеры работы алгоритма на фрагментах реальных магнитных и вихретоковых дефектограмм. В настоящей статье приводится простая и эффективная реализация этого алгоритма, которая с успехом применяется на практике при автоматическом анализе магнитных и вихретоковых дефектограмм

    Об определении уровня полезных сигналов при расшифровке магнитных и вихретоковых дефектограмм

    Get PDF
    To ensure traffic safety of railway transport, non-destructive testing of rails is regularly carried out by using various approaches and methods, including magnetic and eddy current flaw detection methods. The paper is devoted to the problem of automatic determination of a threshold level of amplitudes of useful signals (from defects and structural elements of a railway track) during the analysis of defectograms (records) of magnetic and eddy current flaw detectors. A signal is considered useful (and is subject to further analysis) if a deviation of its value from an average of all signals is at least twice the threshold noise level of rails. The probability of obtaining a signal from a section without structural elements (a rail noise signal) is characterized by the normal distribution law. Thus, the rule of three sigma can be used to calculate the threshold noise level. And a signal is useful if its amplitude deviation from a sample mean exceeds twice the threshold noise level. The paper proposes an algorithm for finding the threshold level of a rail noise and gives its theoretical justification, and it also examines examples of its operation on several fragments of real magnetic and eddy current defectograms. Для обеспечения безопасности движения на железнодорожном транспорте регулярно проводится неразрушающий контроль рельсов с применением различных подходов и методов, включая методы магнитной и вихретоковой дефектоскопии. Статья посвящена задаче автоматического определения порогового уровня амплитуд полезных сигналов (от дефектов и конструктивных элементов рельсового пути) при расшифровке дефектограмм магнитных и вихретоковых дефектоскопов. Сигнал считается полезным (и подлежит дальнейшему анализу), если отклонение его значения от среднего значения всех сигналов как минимум в два раза превосходит пороговый уровень шума рельсов. Вероятность появления сигнала с некоторой амплитудой в бездефектных рельсах на участке без конструктивных элементов, т. е. являющегося рельсовым шумом, характеризуется законом нормального распределения. Таким образом, для вычисления порогового уровня шума может быть задействовано правило трех сигм. А удвоение порога шума дает уровень, превышение которого по амплитудному отклонению от выборочного среднего означает, что сигнал является полезным. В статье предлагается алгоритм нахождения порогового уровня шума рельсов и дается его теоретическое обоснование, а также рассматриваются примеры его работы на нескольких фрагментах реальных магнитных и вихретоковых дефектограмм.

    Применение свёрточных нейронных сетей для распознавания длинных конструктивных элементов рельсов на вихретоковых дефектограммах

    Get PDF
    To ensure traffic safety of railway transport, non-destructive test of rails is regularly carried out by using various approaches and methods, including eddy-current flaw detection methods. An automatic analysis of large data sets (defectograms) that come from the corresponding equipment is an actual problem. The analysis means a process of determining the presence of defective sections along with identifying structural elements of railway tracks in defectograms. This article is devoted to the problem of recognizing images of long structural elements of rails in eddy-current defectograms. Two classes of rail track structural elements are considered: 1) rolling stock axle counters, 2) rail crossings. Long marks that cannot be assigned to these two classes are conditionally considered as defects and are placed in a separate third class. For image recognition of structural elements in defectograms a convolutional neural network is applied. The neural network is implemented by using the open library TensorFlow. To this purpose each selected (picked out) area of a defectogram is converted into a graphic image in a grayscale with size of 30 x 140 points.Для обеспечения безопасности движения на железнодорожном транспорте регулярно проводится неразрушающий контроль рельсов с применением различных подходов и методов, включая методы вихретоковой дефектоскопии. Актуальной задачей является автоматический анализ больших массивов данных (дефектограмм), которые поступают от соответствующего оборудования. Под анализом понимается процесс определения по дефектограммам наличия дефектных участков наряду с выявлением конструктивных элементов рельсового пути. Данная статья посвящена задаче распознавания образов длинных конструктивных элементов железнодорожных рельсов по дефектограммам многоканальных вихретоковых дефектоскопов. Рассматриваются два класса конструктивных элементов рельсового пути: 1) счётчики осей подвижного состава, 2) пересечения рельсовых путей. Длинные отметки, которые не могут быть отнесены к этим двум классам, условно считаются дефектами и выносятся в отдельный третий класс. Для распознавания образов конструктивных элементов на дефектограммах применяется свёрточная нейронная сеть, реализованная в рамках открытой библиотеки TensorFlow. С этой целью каждая выделенная для анализа область дефектограммы преобразуется в графический образ в градации серого цвета размером 30 на 140 точек

    Применение нейронных сетей для распознавания конструктивных элементов рельсов на магнитных и вихретоковых дефектограммах

    Get PDF
    To ensure traffic safety of railway transport, non-destructive test of rails is regularly carried out by using various approaches and methods, including magnetic and eddy current flaw detection methods. An automatic analysis of large data sets (defectgrams) that come from the corresponding equipment is an actual problem. The analysis means a process of determining the presence of defective sections along with identifying structural elements of railway tracks on defectograms. This article is devoted to the problem of recognition of rail structural element images in magnetic and eddy current defectograms. Three classes of rail track structural elements are considered: 1) a bolted joint with straight or beveled connection of rails, 2) a butt weld of rails, and 3) an aluminothermic weld of rails. Images that cannot be assigned to these three classes are conditionally considered as defects and are placed in a separate fourth class. For image recognition of structural elements in defectograms a neural network is applied. The neural network is implemented by using the open library TensorFlow. To this purpose each selected (picked out) area of a defectogram is converted into a graphic image in a grayscale with size of 20 x 39 pixels.Для обеспечения безопасности движения на железнодорожном транспорте регулярно проводится неразрушающий контроль рельсов с применением различных подходов и методов, включая методы магнитной и вихретоковой дефектоскопии. Актуальной задачей является автоматический анализ больших массивов данных (дефектограмм), которые поступают от соответствующего оборудования. Под анализом понимается процесс определения по дефектограммам наличия дефектных участков наряду с выявлением конструктивных элементов рельсового пути. Данная статья посвящена задаче распознавания образов конструктивных элементов железнодорожных рельсов по дефектограммам многоканальных магнитных и вихретоковых дефектоскопов. Рассматриваются три класса конструктивных элементов рельсового пути: 1) болтовой стык с прямым или скошенным соединением рельсов, 2) электроконтактная сварка рельсов и 3) алюмотермитная сварка рельсов. Образы, которые не могут быть отнесены к этим трем классам, условно считаются дефектами и выносятся в отдельный четвертый класс. Для распознавания образов конструктивных элементов на дефектограммах применяется нейронная сеть, реализованная в рамках открытой библиотеки TensorFlow. С этой целью каждая выделенная для анализа область дефектограммы преобразуется в графический образ в градации серого цвета размером 20 на 39 пикселей

    An Efficient Algorithm for Finding a Threshold of Useful Signals in the Analysis of Magnetic and Eddy Current Defectograms

    No full text
    To ensure traffic safety of railway transport, non-destructive testing of rails is regularly carried out by using various approaches and methods, including magnetic and eddy current flaw detection methods. An automatic analysis of large data sets (defectgrams) that come from the corresponding equipment is still an actual problem. The analysis means a process of determining the presence of defective sections along with identifying structural elements of railway tracks on defectograms. At the same time, under the conditions of significant volumes of incoming information, fast and efficient algorithms of data analysis are of most interest. This article is an addition to the previous article devoted to the problem of automatic determination of a threshold level of amplitudes of useful signals (from defects and structural elements of a railway track) during the analysis of defectograms (records) of magnetic and eddy current flaw detectors, which contains an algorithm for finding the threshold level of a rail noise and its theoretical justification with examples of its operation on several fragments of real magnetic and eddy current defectograms. The article presents a simple and effective implementation of the algorithm, which is successfully used in practice for the automatic analysis of magnetic and eddy current defectograms

    On Finding a Threshold of Useful Signals in the Analysis of Magnetic and Eddy Current Defectograms

    No full text
    To ensure traffic safety of railway transport, non-destructive testing of rails is regularly carried out by using various approaches and methods, including magnetic and eddy current flaw detection methods. The paper is devoted to the problem of automatic determination of a threshold level of amplitudes of useful signals (from defects and structural elements of a railway track) during the analysis of defectograms (records) of magnetic and eddy current flaw detectors. A signal is considered useful (and is subject to further analysis) if a deviation of its value from an average of all signals is at least twice the threshold noise level of rails. The probability of obtaining a signal from a section without structural elements (a rail noise signal) is characterized by the normal distribution law. Thus, the rule of three sigma can be used to calculate the threshold noise level. And a signal is useful if its amplitude deviation from a sample mean exceeds twice the threshold noise level. The paper proposes an algorithm for finding the threshold level of a rail noise and gives its theoretical justification, and it also examines examples of its operation on several fragments of real magnetic and eddy current defectograms

    Application of Convolutional Neural Networks for Recognizing Long Structural Elements of Rails in Eddy-Current Defectograms

    Get PDF
    To ensure traffic safety of railway transport, non-destructive test of rails is regularly carried out by using various approaches and methods, including eddy-current flaw detection methods. An automatic analysis of large data sets (defectograms) that come from the corresponding equipment is an actual problem. The analysis means a process of determining the presence of defective sections along with identifying structural elements of railway tracks in defectograms. This article is devoted to the problem of recognizing images of long structural elements of rails in eddy-current defectograms. Two classes of rail track structural elements are considered: 1) rolling stock axle counters, 2) rail crossings. Long marks that cannot be assigned to these two classes are conditionally considered as defects and are placed in a separate third class. For image recognition of structural elements in defectograms a convolutional neural network is applied. The neural network is implemented by using the open library TensorFlow. To this purpose each selected (picked out) area of a defectogram is converted into a graphic image in a grayscale with size of 30 x 140 points

    Application of Neural Networks for Recognizing Rail Structural Elements in Magnetic and Eddy Current Defectograms

    No full text
    To ensure traffic safety of railway transport, non-destructive test of rails is regularly carried out by using various approaches and methods, including magnetic and eddy current flaw detection methods. An automatic analysis of large data sets (defectgrams) that come from the corresponding equipment is an actual problem. The analysis means a process of determining the presence of defective sections along with identifying structural elements of railway tracks on defectograms. This article is devoted to the problem of recognition of rail structural element images in magnetic and eddy current defectograms. Three classes of rail track structural elements are considered: 1) a bolted joint with straight or beveled connection of rails, 2) a butt weld of rails, and 3) an aluminothermic weld of rails. Images that cannot be assigned to these three classes are conditionally considered as defects and are placed in a separate fourth class. For image recognition of structural elements in defectograms a neural network is applied. The neural network is implemented by using the open library TensorFlow. To this purpose each selected (picked out) area of a defectogram is converted into a graphic image in a grayscale with size of 20 x 39 pixels

    Алгоритм корректировки уровней полезных сигналов при расшифровке вихретоковых дефектограмм

    Get PDF
    To ensure traffic safety of railway transport, non-destructive tests of rails are regularly carried out by using various approaches and methods, including eddy-current flaw detection methods. An automatic analysis of large data sets (defectograms) that come from the corresponding equipment is an actual problem. The analysis means a process of determining the presence of defective sections along with identifying structural elements of railway tracks in defectograms. This article continues the cycle of works devoted to the problem of automatic recognizing images of defects and structural elements of rails in eddy-current defectograms. In the process of forming these images, only useful signals are taken into account, the threshold levels of amplitudes of which are determined automatically from eddy-current data. The previously used algorithm for finding threshold levels was focused on situations in which the vast majority of signals coming from the flaw detector is a rail noise. A signal is considered useful and is subject to further analysis if its amplitude is twice the corresponding noise threshold. The article is devoted to the problem of correcting threshold levels, taking into account the need to identify extensive surface defects of rails. An algorithm is proposed for finding the values of threshold levels of rail noise amplitudes with their subsequent correction in the case of a large number of useful signals from extensive defects. Examples of the algorithm’s operation on real eddy-current data are given.Для обеспечения безопасности движения на железнодорожном транспорте регулярно проводится неразрушающий контроль рельсов с применением различных подходов и методов, включая методы вихретоковой дефектоскопии. Актуальной задачей является автоматический анализ больших массивов данных (дефектограмм), которые поступают от соответствующего оборудования. Под анализом понимается процесс определения по дефектограммам наличия дефектных участков наряду с выявлением конструктивных элементов рельсового пути. Данная статья продолжает цикл работ, посвященных задаче автоматического распознавания образов дефектов и конструктивных элементов железнодорожных рельсов по вихретоковым дефектограммам. При формировании этих образов принимаются в расчет только полезные сигналы, пороговые уровни амплитуд которых определяются автоматически по вихретоковым данным. Применяемый ранее алгоритм нахождения пороговых уровней был ориентирован на ситуации, при которых подавляющее большинство поступающих от дефектоскопа сигналов составляет рельсовый шум. Сигнал считается полезным и подлежит дальнейшему анализу, если его амплитуда в два раза превосходит соответствующий пороговый уровень шума. Статья посвящена задаче корректировки пороговых уровней с учётом необходимости выявления протяжённых поверхностных дефектов рельсов. Предлагается алгоритм нахождения значений пороговых уровней амплитуд рельсового шума с их последующей корректировкой в случае наличия большого количество полезных сигналов от протяженных дефектов. Приводятся примеры работы алгоритма на реальных вихретоковых данных

    Оценка степени опасности дефектов при расшифровке вихретоковых дефектограмм

    Get PDF
    To ensure traffic safety of railway transport, non-destructive tests of rails are regularly carried out by using various approaches and methods, including eddy-current flaw detection methods. An automatic analysis of large data sets (defectograms) that come from the corresponding equipment is an actual problem. The analysis means a process of determining the presence of defective sections along with identifying structural elements of railway tracks in defectograms. At the same time, severity estimation of defined defects is also of great interest. This article continues the cycle of works devoted to the problem of automatic recognition of images of defects and rail structural elements in eddy-current defectograms. In the process of forming these images, only useful signals are taken into account, the threshold levels of amplitudes of which are determined automatically from eddy-current data. The article is devoted to the issue of constructing severity estimation of found defects with various lengths. The construction of the severity estimation is based on a concept of the generalized relative amplitude of useful signals. A relative amplitude is a ratio of an actual signal amplitude to a corresponding threshold level of useful signals. The generalized relative amplitude is calculated by using the entropy of the half-normal distribution, which is assumed to be a model for a probability distribution of an appearance of certain relative amplitudes in an evaluated defect. Tuning up the formula for calculating severity estimation of a defect is carried out on the basis of eddy-current records of structural elements. As a reference of the most dangerous defect, the bolted rail joint is considered. It models a fracture of a rail. A reference weak defect is a flash butt weld, a defectogram of which contains signals with low amplitude values. The proposed approach to severity estimation of defects is shown by examples.Для обеспечения безопасности движения на железнодорожном транспорте регулярно проводится неразрушающий контроль рельсов с применением различных подходов и методов, включая методы вихретоковой дефектоскопии. Актуальной задачей является автоматический анализ больших массивов данных (дефектограмм), которые поступают от соответствующего оборудования. Под анализом понимается процесс определения по дефектограммам наличия дефектных участков наряду с выявлением конструктивных элементов рельсового пути. При этом также большой интерес представляет и оценка степени опасности выявленных дефектов. Данная статья продолжает цикл работ, посвященных задаче автоматического распознавания образов дефектов и конструктивных элементов железнодорожных рельсов по вихретоковым дефектограммам. При формировании этих образов принимаются в расчет только полезные сигналы, пороговые уровни амплитуд которых определяются автоматически по вихретоковым данным. Статья посвящена задаче построения оценки степени опасности для выявленных поверхностных дефектов различной протяжённости. Построение оценки опирается на понятие обобщённой относительной амплитуды полезных сигналов. Относительная амплитуда представляет собой отношение реальной амплитуды сигнала к соответствующему пороговому уровню полезных сигналов. Обобщённая относительная амплитуда вычисляется с использованием энтропии полунормального распределения, которое предполагается модельным для распределения вероятностей появления тех или иных относительных амплитуд в оцениваемом дефекте. Настройка формулы расчёта степени опасности дефекта осуществляется на основе записей конструктивных элементов. В качестве эталонного наиболее опасного дефекта рассматривается болтовой рельсовый стык, который моделирует излом рельса. Эталонным слабым дефектом выступает электроконтактная сварка, дефектограмма которой, как правило, содержит сигналы с невысоким значением амплитуд. Предложенный подход к оценке степени опасности дефектов демонстрируется на примерах
    corecore